
Tar2RubyScript - A Tool for Distributing Ruby Applications

Table of Contents
Tar2RubyScript...1

A Tool for Distributing Ruby Applications..1

1. Introduction..2

2. Internals..3
2.1. Creating the RBA...3

a) General...3
b) tar2rubyscript.bat and tar2rubyscript.sh..3

2.2. Executing the RBA..3

3. Usage...5
3.1. Tar2RubyScript..5

a) General Invocation...5
b) The TAR Archive Variant...5
c) The Directory Variant..6

3.2. init.rb..6
3.3. RBA (An Application)...7
3.4. RBA (A Library)..7

4. Examples...9
4.1. Usage of Tar2RubyScript..9

a) The TAR Archive Variant..9
b) The Directory Variant..9
c) A Library (Without init.rb)..9
d) A Library (With init.rb)...10

4.2. tar2rubyscript.sh and tar2rubyscript.bat..10
4.3. oldlocation and newlocation..10
4.4. Combination of Tar2RubyScript and RubyScript2Exe...11

5. License...12
5.1. License of Tar2RubyScript..12
5.2. License of your Application..12

6. Download..13

7. Known Issues..14

8. Credits...15

Notes..16

Tar2RubyScript - A Tool for Distributing Ruby Applications i

Tar2RubyScript

A Tool for Distributing Ruby Applications

Fri May 25 15:06:29 UTC 2007
Erik Veenstra <tar2rubyscript@erikveen.dds.nl>

Tar2RubyScript - A Tool for Distributing Ruby Applications 1

mailto:tar2rubyscript@erikveen.dds.nl

1. Introduction
Tar2RubyScript transforms a directory tree, containing your application, into one single Ruby script,
along with some code to handle this archive. This script can be distributed to our friends. When
they've installed Ruby, they just have to double click on it and your application is up and running!

So, it's a way of executing your application, not of installing it. You might think of it as the Ruby
version of Java's JAR... Let's call it an RBA (Ruby Archive).

"It's Ruby's JAR..."

Like packing related application files into one RBA application, you could as well pack related library
files into one RBA library. Now you don't need to install the compound library in the traditional way
before using it. Just require the RBA.

Because the RBA is pure Ruby and no other programs or libraries are needed, it's easy to distribute it
to friends. They don't have to install anything but Ruby itself.

Unlike the JAR-people, we don't need a new extension for RBA's. A JAR isn't a Java Class, it
contains a Java class; an RBA both is and contains a Ruby script. It's also easier to change the format
of an RBA in the future, because the algorithm to handle the RBA comes with it at a cost in bytes of
less then 10K. Another difference between the two is the entry point: JAR does something with a
manifest; RBA just loads init.rb . And, well, they compress, we don't.

If you like Tar2RubyScript, you might want to read Distributing Ruby Applications. It's about how I
build, pack and distribute my Ruby applications. Theory and practice.

The combination of Tar2RubyScript and RubyScript2Exe is of special interest: A complete Ruby
application can be distributed as one executable:

Tar2RubyScript creates a standalone Ruby script (or RBA, Ruby Archive) of the application
and its directory. This RBA can run on "the Ruby platform". This means that Ruby itself must
be installed on the targeted system.

•

RubyScript2Exe avoids this dependency by compiling a rubyscript (in casu the RBA), the
Ruby interpreter and the Ruby runtime environment into one executable.

•

This combination isn't necessary. Each application can be used without the other.

Tar2RubyScript - A Tool for Distributing Ruby Applications 2

2. Internals

2.1. Creating the RBA

a) General

Tar2RubyScript generates a base64 encoded string from a TAR archive or directory, which contains a
Ruby application, and attaches that string to a Ruby extraction script. The result is just one file, a pure
Ruby script, containing multiple files, stored as comments.

Tar2RubyScript contains two scripts: init.rb, which is the script that is run when building the
RBA, and tarrubyscript.rb, which is the script that is run when unpacking/running the RBA.
In fact, tarrubyscript.rb is the RBA, without the archive. These scripts run on two distinct
moments in time.

The external program tar is still needed for generating the TAR archive internally. (Once again: Not
for extracting/using it.) I assume all Linux and Unix systems have one. I embedded tar.exe,
because only a few Windows systems have it.

b) tar2rubyscript.bat and tar2rubyscript.sh

When creating the RBA, the archive/directory is extracted/copied to a temporary directory. If the
archive/directory contains tar2rubyscript.bat (Windows) or tar2rubyscript.sh (Linux,
Cygwin (Posix in general?)), that script will be executed in the temporary directory. Finally, the
temporary directory is packed to a new TAR archive which becomes part of the RBA. Thus, the
original TAR archive isn't necessarily the same as the one which is part of the RBA. This can be
avoided with --tar2rubyscript-preserve. When using --tar2rubyscript-preserve
in combination with a TAR archive, no external TAR commands are run. No unpacking, no packing.
This might be necessary on platforms with deviant behavior (e.g. TAR on Solaris). Using
--tar2rubyscript-preserve in combination with a directory is pointless.

2.2. Executing the RBA

When the RBA is executed, it splits up into two parts (the script and the string), decodes the base64
encoded string to a temporary TAR archive, unpacks the archive to a temporary directory, jumps to
that directory, eventually jumps to an existing subdirectory, and finally loads init.rb. Et voila,
your application is up and running. When the application has ended, the RBA deletes the temporary
directory recursively.

When unpacking the archive, everything but paths, filenames and contents is disregarded. No
permissions, no owners, no groups. However, hard links and soft links are supported (not on
Windows). Note that both hard and soft links make your RBA platform dependent.

Tar2RubyScript - A Tool for Distributing Ruby Applications 3

(Use these links with care. It's not thoroughly tested...)

Because of the cleaning of temporary files (done by the OS), all files in the temporary directory are
touched every hour. This prevents the deletion of files of long running jobs. This is done by a
background thread that keeps visiting all temporary files in the temporary directory and its
subdirectories.

ENV["PATH"] is extended with both oldlocation and newlocation, just before loading
init.rb. The OS might need this to find shared objects (e.g. DLL's).

2. Internals

Tar2RubyScript - A Tool for Distributing Ruby Applications 4

3. Usage

3.1. Tar2RubyScript

a) General Invocation

If you use the original tar2rubyscript.rb:

c:\home\erik> ruby tar2rubyscript.rb ...

If you installed the gem, it's:

c:\home\erik> tar2rubyscript ...

b) The TAR Archive Variant

Create a TAR archive, with a root that contains at least the file init.rb or a root that contains just
one directory which contains at least the file init.rb. If the root of the archive contains only one
directory, a cd to that directory will be done when executing the RBA.

Create the RBA:

c:\home\erik> tar cf application .tar application [/]
c:\home\erik> ruby tar2rubyscript.rb application .tar \
 [application .rb [license.txt]]

Tar2RubyScript - A Tool for Distributing Ruby Applications 5

If the TAR archive also contains tar2rubyscript.bat (Windows) or tar2rubyscript.sh
(Linux, Cygwin (Posix in general?)), that script will be executed "in the archive". Changes in the
archive aren't permanent.

If application.rb is not provided or if it equals to "-", it will be derived from
application.tar .

If a license is provided, it will be put at the beginning of the RBA.

c) The Directory Variant

Create a directory, which contains at least the file init.rb.

Create the RBA:

c:\home\erik> ruby tar2rubyscript.rb application [/] \
 [application .rb [license.txt]]

If the TAR archive also contains tar2rubyscript.bat (Windows) or tar2rubyscript.sh
(Linux, Cygwin (Posix in general?)), that script will be executed in a copy of the directory, just before
the internal TAR archive is being created.

(Changes in the directory aren't permanent anymore!)

If application.rb is not provided or if it equals to "-", it will be derived from application/ .

If a license is provided, it will be put at the beginning of the RBA.

3.2. init.rb

Because init.rb executes in the temporary directory, all references to files relative to the original
directory have to be escaped [1] by oldlocation. For example, instead of...

file = ARGV.shift

...you have to use:

file = oldlocation(ARGV.shift)

If you want to execute a block of code in the original directory, you can use oldlocation as well:

oldlocation do
 Dir.new('.').each do |f|
 # ...
 end
end

Put this at the beginning of the script to let it run in the original directory (see the examples):

Dir.chdir oldlocation

3. Usage

Tar2RubyScript - A Tool for Distributing Ruby Applications 6

Now you have to escape the files in the temporary directory:

file = newlocation("...")
or
newlocation{...}

I created oldandnewlocation.rb that can be "require"d in init.rb, so the application can
run without being wrapped by Tar2RubyScript. This script doesn't do anything but defining
oldlocation and newlocation.

TAR2RUBYSCRIPT is set to true before loading init.rb, so it's possible to detect whether the
application is run as an RBA or not:

puts "Running as an RBA." if defined?(TAR2RUBYSCRIPT)

3.3. RBA (An Application)

c:\home\erik> ruby application .rb [parameters]

Parameter Description

--tar2rubyscript-list Just list the contents of the RBA.

--tar2rubyscript-justextractJust extract the RBA, but not execute it.

--tar2rubyscript-totar Just convert the RBA (back) into a TAR file.

If one of these parameters is used, Tar2RubyScript does just that. It doesn't execute init.rb.

If none of these parameters is used, Tar2RubyScript executes init.rb with the given parameters.
To be forward compatible, all parameters starting with --tar2rubyscript- will be deleted
before the execution of init.rb .

The exit code of the RBA is the same as the exit code of your application.

3.4. RBA (A Library)

Packing a library into an RBA is basically the same as packing an application. It's just that you don't
need the init.rb.

Using it is different from an application. Suppose you packed a directory with the file lib_a.rb and
lib_b.rb into the RBA testlib.rb. An application, which is going to use both libraries, needs
to require "testlib", before require-ing the two libraries:

require "testlib"
require "lib_a"
require "lib_b"

I usually put the last two lines in the init.rb of the RBA. That will reduce the require-ing in the
application to just one line:

require "testlib"

3. Usage

Tar2RubyScript - A Tool for Distributing Ruby Applications 7

It's possible to use multiple libraries in one library RBA and multiple library RBA's in your
application, which can be an RBA as well. newlocation escapes the files of the last RBA, either
library or application. It's not possible (yet) to access the files in other RBA's.

3. Usage

Tar2RubyScript - A Tool for Distributing Ruby Applications 8

4. Examples

4.1. Usage of Tar2RubyScript

a) The TAR Archive Variant

$ rm -rf demo demo.tar demo.rb
$
$ mkdir demo
$
$ echo 'puts File.new("demo1.txt").readlines' > demo/init.rb
$ echo 'puts File.new("demo2.txt").readlines' >> demo/init.rb
$ echo 'Hello ' > demo/demo1.txt
$ echo 'World! ' > demo/demo2.txt
$
$ tar cf demo.tar demo/
$
$ ruby tar2rubyscript.rb demo.tar # Results in demo.rb
$
$ ruby demo.rb
Hello
World!

b) The Directory Variant

$ rm -rf demo demo.tar demo.rb
$
$ mkdir demo
$
$ echo 'puts File.new("demo1.txt").readlines' > demo/init.rb
$ echo 'puts File.new("demo2.txt").readlines' >> demo/init.rb
$ echo 'Hello ' > demo/demo1.txt
$ echo 'World! ' > demo/demo2.txt
$
$ ruby tar2rubyscript.rb demo/ # Results in demo.rb
$
$ ruby demo.rb
Hello
World!

c) A Library (Without init.rb)

$ rm -rf demo demo.tar demo.rb
$
$ mkdir demo
$
$ echo 'puts "Hello" ' > demo/lib_a.rb
$ echo 'puts "World!" ' > demo/lib_b.rb
$
$ ruby tar2rubyscript.rb demo/ # Results in demo.rb
$
$ ruby -e 'require "demo" ; require "lib_a" ; require "lib_b"'
Hello
World!

Tar2RubyScript - A Tool for Distributing Ruby Applications 9

d) A Library (With init.rb)

$ rm -rf demo demo.tar demo.rb
$
$ mkdir demo
$
$ echo 'require "lib_a.rb" ' > demo/init.rb
$ echo 'require "lib_b.rb" ' >> demo/init.rb
$ echo 'puts "Hello" ' > demo/lib_a.rb
$ echo 'puts "World!" ' > demo/lib_b.rb
$
$ ruby tar2rubyscript.rb demo/ # Results in demo.rb
$
$ ruby -e 'require "demo"'
Hello
World!

4.2. tar2rubyscript.sh and tar2rubyscript.bat

$ rm -rf demo demo.tar demo.rb
$
$ mkdir demo
$
$ echo 'puts File.new("demo1.txt").readlines' > demo/init.rb
$ echo 'puts File.new("demo2.txt").readlines' >> demo/init.rb
$ echo 'Hello ' > demo/demo1.txt
$ echo 'echo World! > demo2.txt ' > demo/tar2rubyscript.sh
$
$ ruby tar2rubyscript.rb demo/ # Results in demo.rb
". ./tar2rubyscript.sh"
$
$ ruby demo.rb
Hello
World!

4.3. oldlocation and newlocation

$ rm -rf demo demo.tar demo.rb
$
$ mkdir demo
$
$ echo 'p [1, oldlocation("file.ext")] ' > demo/init.rb
$ echo 'p [2, newlocation("file.ext")] ' >> demo/init.rb
$ echo ' ' >> demo/init.rb
$ echo ' p [3, Dir.pwd] ' >> demo/init.rb
$ echo 'oldlocation do ' >> demo/init.rb
$ echo ' p [4, Dir.pwd] ' >> demo/init.rb
$ echo ' newlocation do ' >> demo/init.rb
$ echo ' p [5, Dir.pwd] ' >> demo/init.rb
$ echo ' end ' >> demo/init.rb
$ echo ' p [6, Dir.pwd] ' >> demo/init.rb
$ echo 'end ' >> demo/init.rb
$ echo ' p [7, Dir.pwd] ' >> demo/init.rb
$
$ ruby tar2rubyscript.rb demo/ # Results in demo.rb
$
$ ruby demo.rb

4. Examples

Tar2RubyScript - A Tool for Distributing Ruby Applications 10

[1, "/home/erik/file.ext"]
[2, "/tmp/tar2rubyscript.d.597/demo/file.ext"]
[3, "/tmp/tar2rubyscript.d.597/demo"]
[4, "/home/erik"]
[5, "/tmp/tar2rubyscript.d.597/demo"]
[6, "/home/erik"]
[7, "/tmp/tar2rubyscript.d.597/demo"]

4.4. Combination of Tar2RubyScript and
RubyScript2Exe

Create a directory application/ which contains at least init.rb .

$ ruby tar2rubyscript.rb application /
$ ruby rubyscript2exe.rb application .rb

4. Examples

Tar2RubyScript - A Tool for Distributing Ruby Applications 11

5. License

5.1. License of Tar2RubyScript

Tar2RubyScript, Copyright (C) 2003 Erik Veenstra <tar2rubyscript@erikveen.dds.nl>

This program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License (GPL), version 2, as published by the Free Software Foundation.

This program is distributed in the hope that it will be useful, but without any warranty; without
even the implied warranty of merchantability or fitness for a particular purpose. See the GNU
General Public License (GPL) for more details.

You should have received a copy of the GNU General Public License (GPL) along with this program;
if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

The full text of the license can be found here.

5.2. License of your Application

Whatever...

Tar2RubyScript - A Tool for Distributing Ruby Applications 12

mailto:tar2rubyscript@erikveen.dds.nl

6. Download
Current version is 0.4.8 (08.03.2006). It's a stable release.

Tested on:

Red Hat Linux 8.0 with Ruby 1.6.7•
Red Hat Linux 8.0 with Ruby 1.8.1•
Red Hat Linux 8.0 with Ruby 1.8.2•
Solaris 2.8 with Ruby 1.8.0 (Only the TAR archive variant works. The directory variant
doesn't.)

•

Windows 95 with Ruby 1.8•
Windows 98 with Ruby 1.6 (Very slow!)•
Windows 98 with Ruby 1.8•
Windows NT 4.0 with Ruby 1.8•
Windows 2000 with Ruby 1.8•
Windows 2000 with Ruby 1.8 (Cygwin)•
Windows XP with Ruby 1.8•
Windows XP with Ruby 1.8 (Cygwin)•

You only need tar2rubyscript.rb . It's the current version, built by Tar2RubyScript itself. You can
download tar2rubyscript.tar.gz if you want to play with the internals of Tar2RubyScript.
Tar2RubyScript is available as tar2rubyscript.gem as well.

Send me reports of all bugs and glitches you find. Propositions for enhancements are welcome, too.
This helps us to make our software better.

A change log and older versions can be found here. A generated log file can be found here.

Tar2RubyScript is available on SourceForge.net and on RubyForge .

Tar2RubyScript - A Tool for Distributing Ruby Applications 13

http://sourceforge.net/projects/tar2rubyscript/
http://rubyforge.org/projects/tar2rubyscript/

7. Known Issues
You might have to add $stdout.sync = $stderr.sync = true at the beginning of
your script when you use print. Somehow, the output isn't always displayed as expected.

•

On Darwin, you might run into a Too many open files - getcwd
(Errno::EMFILE). I've no solution for this. As far as I know, this is not directly related to
Tar2Rubyscript. It's an OS kind of thing. Run ulimit -n to show the maximum number of
open files. It is 256 on Mac OS X. Run ulimit -n3000 (for example) to fix it.

•

Windows (at least Windows 98; Windows 2000 looks alright) doesn't wait for a child to
complete, before continuing in the parent. This means that tar2rubyscript.bat hasn't
finished copying (it's usually used to copy files into the application), before Tar2RubyScript
starts packing.

•

If the original directory contains read-only files, these can't be overwritten by a second file
(e.g. require "abc"; require "ABC" : the second file will overwrite the first one,
on Windows).

•

Old Windows shells don't do any command line expansion. That means that TAR receives *
as an parameter and handles it properly. Newer Windows shells do some kind of command
line expansion. The * is replaced by "" (Windows wants *.*, although there is no . in
app/...), so TAR gets no parameters and complaints (Cowardly refusing to
create an empty archive). FIXED IN 0.4.5!

•

Tar2RubyScript - A Tool for Distributing Ruby Applications 14

8. Credits
Thomas Hurst, for giving us some Ruby code for handling TAR archives.•

Tar2RubyScript - A Tool for Distributing Ruby Applications 15

mailto:tom@hur.st

Notes

[1] I once heard: "I don't want to change my scripts to be compatible with your tool!". And I agree. I've had some thoughts in that
direction before I introduced oldlocation and newlocation. But that ideology is less important than a solid solution for deciding which
files are to be loaded from the temporary directory (help files, images, licenses, default configurations, etc.) and which files are to be
loaded from the user directory (databases, user configurations, etc.). This decision can't be made by Tar2RubyScript. Somehow, the
programmer has to make this decision. And it's not only about files, but also about blocks of code. (e.g. Dir.new('.')) Sometimes, you
want to open the user directory; sometimes, you want to open the temporary directory.) It's up to the programmer. That's where
oldlocation and newlocation popped up.

aior all allinone allinoneruby applications archive bin browser code codesnippet codesnippets compile compiler computer
computerlanguage dialog dialogs distribute distributing distributingrubyapplications distribution eee eee-file eeefile erik erikveen

erikveenstra exe executable exerb file graphical graphicaluserinterface gui gz html http httpserver iloveruby interface jar jit just justintime
lang language one pack package packaging packing packingrubyapplications programming programminglanguage rar rb rb2bin rb2exe rba
rbarchive rbtobin rbtoexe rbw ruby ruby2bin ruby2exe rubyapplications rubyarchive rubycompiler rubyscript rubyscript2 rubyscript2exe

rubyscripts rubyscripttoexe rubytobin rubytoexe rubyweb rubywebdialog rubywebdialogs script scripts server snippet snippets t2rb t2rs tar
tar2rb tar2rbscript tar2rs tar2rscript time ui user userinterface veenstra web webbrowser webdialog webdialogs window windowinbrowser

windows wrap wrapper wxruby zip

Tar2RubyScript - A Tool for Distributing Ruby Applications 16

	Table of Contents
	Tar2RubyScript
	A Tool for Distributing Ruby Applications

	1. Introduction
	2. Internals
	2.1. Creating the RBA
	a) General
	b) tar2rubyscript.bat and tar2rubyscript.sh

	2.2. Executing the RBA

	3. Usage
	3.1. Tar2RubyScript
	a) General Invocation
	b) The TAR Archive Variant
	c) The Directory Variant

	3.2. init.rb
	3.3. RBA (An Application)
	3.4. RBA (A Library)

	4. Examples
	4.1. Usage of Tar2RubyScript
	a) The TAR Archive Variant
	b) The Directory Variant
	c) A Library (Without init.rb)
	d) A Library (With init.rb)

	4.2. tar2rubyscript.sh and tar2rubyscript.bat
	4.3. oldlocation and newlocation
	4.4. Combination of Tar2RubyScript and RubyScript2Exe

	5. License
	5.1. License of Tar2RubyScript
	5.2. License of your Application

	6. Download
	7. Known Issues
	8. Credits
	Notes

