RubyScript2Exe - A Ruby Compiler

Table of Contents

B) VAT ol 1] 0 724 = (= TP P P PP P PP PPPPPPPPIN 1
A RUDY COMPIIEE ...ttt e e e e e e e e e e e e e e e e e e eeaeeeas 1
I [a1 oo [0 [ox i o] o FO OO P PP PPPPPPPPRPPPN 2
P2 [0 (] g oL PP PP P PP PPPPPPPPRPPPN 3
2.1 RUDYSCIIPI2EXE. ...ttt ettt e e e et e e e e e e e et e e e e e e e e es 3
2.2 EEE. oo e e e e e e e e e e e e n e 3
G T 7= o =PSSO PRSP PPPPPPPPPPP 5
3.1.CompiliNgthe APPIICALION ... e e e e 5
3.2. RUNNINGNE APPIICALION. ... e e 6
3.3. FromInsideyour APPHCALION..........ooueiiiiie et 6
a) RUBYSCRIPTZ2EXE.(AIIS|DIN[IID) S .cceeiiiieeeeeee e 7
D) RUBY SCRIPT2EXE €MD .ottt 8
C) RUBY SCRIP T 2EXE KT ..ttt e e e e e e e 8
d) RUBY SCRIPT2EXE.TUDYWSRcciiiiiiiiiiiitiie ettt e e e 8
€) RUBY SCRIP T 2EXE . S .t etetee ettt ettt e e e s e e e e e e e 8
f) RUBYSCRIPT2EXE.is_compil(iNg|€a)2......coeiiiiiiiiiiiieeee e 8
0) RUBYSCRIPTZ2EXE.QPPAIL. ... iiiiiieiiiie ettt e e 9
N) RUBY SCRIPT2EXE.USEITIL......eeiiiieiiiiiiieiiii ettt e e e e e e e 9
1) RUBY SCRIPTZ2EXE.EXEUIE.cciiiiiiiiiiiieeee ettt e e e s es 9
]) RUBYSCRIPTZ2EXE.EXECULADIE.ceiiiiiiiiiiiiieiie et 10
K) INformationabOULEEE.............ooooiiiiiiiii e 10
LA TIPS & THICKS . .ttt e e e e e e e e e e e e 11
a) JUSESCANNINGNO RUNNING ...ceieeiiiiiiei ittt e e e e ees 11
(o) 1 oo o1 o o FRU TP PP PP PPPPPPP PPN 11
C) HACKINGON LOCALION.ceiiiiiiiiiiiie ittt ettt e e e e e e e e e e e e e 11
T = 10 1]][TP PPP P PPPPPPPPPPPP 13
4.1 DISHDULIONS. ..ottt e e e e e e e e e e e e et e e e e e e e e e e e e e e e e e 13
S 07T L] = PP PP PPP T PPPPPPPPRPPP 14
5.1.Licenseof RUDYSCIIPIZEXE.cooi ittt a e 14
5.2.Licenseof YOUr APPIICALION..........uuiiiieieiiiiiite et e e e e e 14
6. DOWINIOAM. ...ttt e et e e e e e et e e e e e e e et e e e e e e e e e e e 15
6. 1. MAC OS X (DAIWIN)....tteeeeeeeeiieiet ettt e e e et e e e e e et e e e e s e s r e e e e e e e e e b e e e e e e e e s annnnees 15
7 KNOWIN IS SUBS ...t s ettt n e e e e e e e e e e e e e e e e e 17

RubyScript2Exe - A Ruby Compiler i

RubyScript2Exe

A Ruby Compiler

Tue May 29 20:09:00 UTC 2007
Erik Veenstra <rubyscript2exe@erikveen.dds.nl>

RubyScript2Exe - A Ruby Compiler

mailto:rubyscript2exe@erikveen.dds.nl

1. Introduction

RubyScript2Exe transforms your Ruby application into a standalone, compressed Windows, Linux or
Mac OS X (Darwin) executable. You can look at it as a "compiler". Not in the sense of a
source-code-to-byte-code compiler, but as a "collector”, for it collects all necessary files to run your
application on an other machine: the Ruby application, the Ruby interpreter and the Ruby runtime
library (stripped down for your application). Anyway, the result is the same: a standalone executable
(application.exe). And that's what we want!

Because of the gathering of files from your own Ruby installation, RubyScript2Exe creates an
executable for the platform it's being run on. No cross compile.

And when | say Windows, | mean both Windows (Rubylinstaller, MinGW and MSWin32) and
Cygwin. But the generated exe under Cygwin is very, very big, because its exe's are very big
(static?) and it includes cygwinl.dll, so it can run on machines without Cygwin.

There is one more advantage: Because there might be some incompatibilities between the different
Ruby versions, you have to test your application with every single version. Unless you distribute your
version of Ruby with your application...

RubyScript2Exe can handle simple scripts, but it can handle complete directories as well. Usually, an
application is more than just a program or a script. It consists of libraries, documentation, help files,
configuration files, images, licenses, readmes, and so on. You can embed all of them in one single

executable.
I

What's the difference between RubyScript2Exe and AlllnOneRuby? Well, RubyScript2Exe includes
an application (your script), the Ruby VM and only parts of the ruby_lib tree (it's stripped specifically
for your application). AllinOneRuby contains a complete Ruby installation: it includes no application,
but it does include the Ruby VM and the complete ruby_lib tree. You can use allinoneruby.exe

like ruby.exe (Windows) and allinoneruby_* like ruby (Linux, Darwin) that's already

installed on your system. In other words: the executable, generated with RubyScript2Exe, is an
application; the one generated with AllinOneRuby "is" Ruby.

If you like RubyScript2Exe, you might want to read Distributing Ruby Applications. It's about how |
build, pack and distribute my Ruby applications. Theory and practice.

(I'm working on full support of RubyGems. The handling of require_gem and the mangling of $: are implemented and all files of a gem
are embedded. I've tested just a couple of gems, not all of them. If you've troubles with a specific gem, please let me know.)

RubyScript2Exe - A Ruby Compiler 2

2. Internals

2.1. RubyScript2Exe

RubyScript2Exe monitors the execution of your application. This is done by running your application
with a special library. After your application has finished, this special library returns all information
about your application to RubyScript2Exe. RubyScript2Exe then gathers all program files and
requirements (ruby.exe, rubyw.exe or ruby (and their so's, o's and dll's, determined

recursively), *.rb, *.so, *.0 and *.dll (and their so's, 0's and dllI's, determined recursively))

from your own Ruby installation. All these files, your application and an extracting program are
combined into one single, compressed executable. This executable can run on a bare Windows
installation, a Linux installation with a libc version >= yours or a Darwin installation. Call it a
"just-in-time and temporary installation of Ruby"...

e, BXE (L1 N FH tratler

2.2. EEE

EEE stands for "Environment Embedding Executable". Well, | just had to give it a name...

EEE is the little Pascal program that packs and compresses all necessary files. It had to be written in a
language that could be compiled and linked into an exe-file. Ruby wasn't an option. | use FreePascal
(2.9.8 on Windows, 1.9.8 on Linux and 1.9.8 on Darwin).

EEE has two modes: packing and unpacking. When it detects an attached archive, it jumps into
unpacking mode; into packing mode otherwise.

After creating the temporary directory and unpacking all files, EEE spawns the Ruby interpreter for
your application.rb . At that point, EEE releases control to Ruby itself. After Ruby has

RubyScript2Exe - A Ruby Compiler 3

http://www.freepascal.org/

2. Internals

finished, EEE regains control and starts cleaning up.

The difference between eee.exe and eeew.exe is the same as the difference between ruby.exe
and rubyw.exe: With or without a DOS-box.

I've given EEE a page of its own, with more information then this section provides.

RubyScript2Exe - A Ruby Compiler 4

3. Usage

3.1. Compiling the Application

If you use the original rubyscript2exe.rb:

c:\home\erik> ruby rubyscript2exe.rb application .rbjw][parameters]
or
c:\home\erik> ruby rubyscript2exe.rb application [/][parameters]

If you installed the gem, it's:

c:\home\erik> rubyscript2exe application .rb[w][parameters]
or
c:\home\erik> rubyscript2exe application [/][parameters]
Parameter Description
--rubyscript2exe-rubyw Avoid the popping up of a DOS box. (It's annoying in the tgst

period... No puts and p anymore... Only use it for distributing
your application. See Logging.)

--rubyscript2exe-ruby Force the popping up of a DOS box (default).

--rubyscript2exe-nostrip Avoid stripping. The binaries (ruby and *.so0) on Linux and
Darwin are stripped by default to reduce the size of the
resulting executable.

--rubyscript2exe-strace Start the embedded application with strace (Linux only, for
debugging only).

--rubyscript2exe-tk (experimental) Embed not only the Ruby bindings for TK, Qut
TK itself as well.

--rubyscript2exe-verbose Verbose mode.

--rubyscript2exe-quiet Quiet mode.

In case you want to compile a complete directory, the entry point of you application has to be
init.rb. RubyScript2Exe complains if it can't find application/init.rb.

All parameters starting with --rubyscript2exe- will be deleted before the execution of
application.rb.

If the extension is "rb", a DOS box will pop up. If the extension is "rbw", no DOS box will pop up.
Unless it is overwritten by a parameter.

On Linux and Darwin, there's no difference between ruby and rubyw.

When using --rubyscript2exe-tk, it's probably a good idea to add exit if
RUBYSCRIPT2EXE.is_compiling? (see is_compiling?) just before Tk.mainloop:

require "rubyscript2exe”
exit if RUBYSCRIPT2EXE.is_compiling?
Tk.mainloop

RubyScript2Exe - A Ruby Compiler 5

3. Usage

It is possible to change the icon of the generated executable manually, with a resource editor like
Resource Hacker. If Resource Hacker is installed, in your %PATH% and therefor available from the
current directory, and an icon file with the name application.ico exists in the current directory,

the default icon will automatically be replaced by yours. | used Resource Hacker 3.4.0 for my tests.

3.2. Running the Application

c:\home\erik> application .exe[parameters |

Parameter Description
--eee-list Just list the contents of the executable. (Doesn't work in combination with
rubyw.)
--eee-info Just show the information stored in the executable. (Doesn't work in
combination with rubyw.)
--eee-justextract Just extract the original files from the executable into the current directory
(no subdirectory!).

If one of these parameters is used, RubyScript2Exe does just that. It doesn't execute the application.

If none of these parameters is used, RubyScript2Exe executes the application with the given
parameters. To be forward compatible, all parameters starting with --eee- will be deleted before the

execution of the application.

The exit code of the executable is the same as the exit code of your application.

3.3. From Inside your Application

Module RUBYSCRIPT2EXE is available after doing a require "rubyscript2exe". This
module is used in this section.

Yep, we've two files with the same name: the application rubyscript2exe.rb (big) and the
library rubyscript2exe.rb (small). They're not the same. But, since the big application
rubyscript2exe.rb is an RBA and includes the small library rubyscript2exe.rb, you can
always do require "rubyscript2exe". It doesn't matter whether Ruby finds the big one or
the small one. It should work either way. Funny stuff, those RBA's... ;]

This is an overview of the methods (or module variables) RUBYSCRIPT2EXE provides. They're
explained in detail in the next sections.

Method Useful at Compile-Time| Useful at Run-Time | Default
RUBYSCRIPT2EXE.dlIs= X 0
RUBYSCRIPT2EXE.bin= X 1
RUBYSCRIPT2EXE.lib= X 1
RUBYSCRIPT2EXE.tempdir= X nil
RUBYSCRIPT2EXE.tk= X false

RubyScript2Exe - A Ruby Compiler 6

http://www.users.on.net/~johnson/resourcehacker/

3. Usage

RUBYSCRIPT2EXE.rubyw= X false
RUBYSCRIPT2EXE.strip= X true
RUBYSCRIPT2EXE.is_compilingjx
RUBYSCRIPT2EXE.is_compiled?
RUBYSCRIPT2EXE.appdir
RUBYSCRIPT2EXE.userdir
RUBYSCRIPT2EXE.exedir
RUBYSCRIPT2EXE.executable
a) RUBYSCRIPT2EXE.(dlls|bin|lib)=

X [X [X [X [X

The application itself (application.rb) usually doesn't need to know that it's wrapped by
RubyScript2Exe. But sometimes RubyScript2Exe needs to know something about the application.
Instead of introducing separate configuration files, | simply abuse application.rb as a
configuration file...

Sometimes, you want to embed an additional DLL in the executable. That's easily done by using
RUBYSCRIPT2EXE.dlIs= in your application:

require "rubyscript2exe"
RUBYSCRIPT2EXE.dIIs = ["a.dll", "b.dIl", "c.dll"]

(You can also do this: RUBYSCRIPT2EXE.dlIs << "a.dll")

At the end of the tracing of your application, the mentioned DLL's are copied from the directory in
which the application was started, if they exist. The DLL's on which these DLL's depend are not
copied, in contrast to the dependencies of ruby.exe and its libraries, which are resolved
recursively.

(Although RubyScript2Exe knows how to handle application directories, you still have to mention your personal DLL's by hand. Yes, the
DLL's are embedded twice... | want to change this in the future.)

On one location, | was not supposed to change the application for this kind of things. So | did the
following trick:

c:\home\erik> type dils .rb

require "rubyscript2exe"

RUBYSCRIPT2EXE.dlls =[" somedIl", " another .dil"]

c:\home\erik> ruby -r dils rubyscript2exe.rb application .rb

Like RUBYSCRIPT2EXE.dlIs=, you can use RUBYSCRIPT2EXE.bin= as well for EXE's and
(non-library) DLL's and SO's. In fact, RUBYSCRIPT2EXE.dlls= and RUBYSCRIPT2EXE.bin=
are handled exactly the same. For library files (RB's, SO's and DLL's), you can use
RUBYSCRIPT2EXE.lib=.

RubyScript2Exe - A Ruby Compiler 7

3. Usage
b) RUBYSCRIPT2EXE.tempdir=

Some firewalls block outbound connections to prevent viruses and other bad programs to connect to
their friends, unless the program initiating the connection is "white-listed" manually. This "white-list"
is based upon the full path to the executable. RubyScript2Exe installs Ruby and the application in a
temporary directory in % TEMP%, before starting it. This directory is something like
$HOME/.eee/eee.application.243 or %HOME%)\eee\eee.application.342. The

number part changes every time you start the application. This is not good if you want to "white-list"
the program, because ruby.exe is started from another directory every time. To prevent this, you
can set RUBYSCRIPT2EXE.tempdir= to the directory name that will be created in % TEMP%:

require "rubyscript2exe"
RUBYSCRIPT2EXE.tempdir = "myapplication"

Now RubyScript2Exe will use $HOME/.eee/myapplication or

%HOME%\eee\myapplication every time the program is started. This has a drawback: A second
instance of the program tries to install itself in the same directory. It fails to do so, because the
directory already exists. It gets even worse when the first instance of the application dies

unexpectedly and fails to cleanup its own temporary directory: You won't be able to start the
application anymore, unless you remove the temporary directory manually or wait for the OS to do so.

(Use RUBYSCRIPT2EXE.tempdir= only when necessary! It's just a hack. Its behavior might be changed in the future. | don't know
yet...)

c) RUBYSCRIPT2EXE.tk=

Embed not only the Ruby bindings for TK, but TK itself as well.

(This is considered experimental.)

d) RUBYSCRIPT2EXE.rubyw=

It's the same as compiling with --rubyscript2exe-rubyw.

e) RUBYSCRIPT2EXE.strip=

It's the same as compiling with --rubyscript2exe-nostrip (but reversed...).

f) RUBYSCRIPT2EXE.is_compil(ing|ed)?
The application is run by RubyScript2Exe on two different moments in time:
« The moment the developer creates the executable. This can be detected with
RUBYSCRIPT2EXE.is_compiling?.

* The moment the customer runs the executable. This can be detected with
RUBYSCRIPT2EXE.is_compiled?.

RubyScript2Exe - A Ruby Compiler 8

3. Usage
g) RUBYSCRIPT2EXE.appdir

If you want to know the full path to the directory of your (embedded) application, use
RUBYSCRIPT2EXE.appdir. You can do this when the application is compiled, but even when it
isn't yet compiled.

For example (not compiled):

require "rubyscript2exe"

RUBYSCRIPT2EXE.appdir ===> C:/bin
RUBYSCRIPT2EXE.appdir("README") ===> C:/bin/README
RUBYSCRIPT2EXE.appdir{Dir.pwd} ===> C:/bin

For example (compiled):

require "rubyscript2exe”

RUBYSCRIPT2EXE.appdir ===> C:/home/eeel/eee.troep.exe.2/app
RUBYSCRIPT2EXE.appdir("README") ===> C:/home/eee/eee.troep.exe.2/app/README
RUBYSCRIPT2EXE.appdir{Dir.pwd} ===> C:/home/eee/eee.troep.exe.2/app

RUBYSCRIPT2EXE.appdir and RUBYSCRIPT2EXE.appdir("bin") are added to
ENV['PATH"].

RUBYSCRIPT2EXE.appdir and RUBYSCRIPT2EXE.appdir("lib") are added to $:.

h) RUBYSCRIPT2EXE.userdir

If you want to know the full path to the directory in which the user started the application, use
RUBYSCRIPT2EXE.userdir. You can do this when the application is compiled, but even when it
isn't yet compiled.

For example (not compiled or compiled):

require "rubyscript2exe"

RUBYSCRIPT2EXE.userdir ===> C:/work
RUBYSCRIPT2EXE.userdir("app.cfg”) ===> C:/work/app.cfg
RUBYSCRIPT2EXE.userdir{Dir.pwd} ===> C:/work

(Actually, when running the application uncompiled, this is the directory (Dir.pwd) in which the applications requires
rubyscript2exe.rb, which isn't necessarily the directory in which the user started the application.)

1) RUBYSCRIPT2EXE.exedir

If you want to know the full path to the directory in which your executable resides, use
RUBYSCRIPT2EXE.exedir. You can do this when the application is compiled, but even when it
isn't yet compiled.

For example (not compiled or compiled):

require "rubyscript2exe”
RUBYSCRIPT2EXE.exedir ===> C:/bin
RUBYSCRIPT2EXE.exedir("app.cfg") ===> C:/bin/app.cfg

RubyScript2Exe - A Ruby Compiler 9

3. Usage
RUBYSCRIPT2EXE.exedir{Dir.pwd} ===> C:/bin

(Actually, when running the application uncompiled, this is the directory of the main script. Literally:
File.dirname(File.expand_path($0)).)

j) RUBYSCRIPT2EXE.executable

If you want to know the full path to the executable, use RUBYSCRIPT2EXE.executable. You
can do this when the application is compiled, but even when it isn't yet compiled.

For example (not compiled):

require "rubyscript2exe"
RUBYSCRIPT2EXE.executable ===> C:/bin/app.rb

For example (compiled):

require "rubyscript2exe"
RUBYSCRIPT2EXE.executable ===> C:/bin/app.exe

(Actually, when running the application uncompiled, this is the main script. Literally: File.expand_path($0).)

K) Information about EEE

In your application, you can access some information about the environment EEE sets up before
spawning your application:

Constant Setto Replaced by

RUBYSCRIPT2EXE::APPEXE Filename of the |RUBYSCRIPT2EXE.executable
generated and RUBYSCRIPT2EXE.exedir
executable.

RUBYSCRIPT2EXE::EEEEXE eee.exe or

eeew.exe or
eee_linux or
eee_darwin.

RUBYSCRIPT2EXE::TEMPDIR Temporary RUBYSCRIPT2EXE.appdir
directory in which
the application
resides.

RUBYSCRIPT2EXE::PARMS Parameters from
the command line

RUBYSCRIPT2EXE::QUOTEDPARMRuoted parameters
from the commang
line.

(Use these constants only when necessary. Don't consider them "stable"...)

RubyScript2Exe - A Ruby Compiler 10

3. Usage

3.4. Tips & Tricks

a) Just Scanning, no Running

RubyScript2Exe runs the application (in a child process) and gathers the require-d files. It's not
necessary to run the complete application when all require-s are done in the first couple of
statements. You might as well exit right after the require statements:

require "rubyscript2exe"
exit if RUBYSCRIPT2EXE.is_compiling?

Sometimes, one or more require-s are done later on, deep down in a library (e.g. when connecting

to a database in DBI). It's not a good idea to do the above trick under this kind of circumstances.
You'll miss some libraries...

b) Logging

When using --rubyscript2exe-rubyw, the application runs without a console. This is nice for

an application with a GUI. But, although you're a good programmer, sometimes the applications
simply dies. If there's no console, there's no back-trace as well. | usually add one of the following
lines to the top of my application, even before the require statements:

$stdout = $stderr = File.new(" /path/to/temp/application Jog", "w")
or
$stdout = $stderr = File.new(" /path/to/temp/application #{Process.pid}.log", "w")

¢) Hacking on Location

You can extract, modify and "compile” on location, if you want to.

First, extract the executable:

c:\home\erik> application .exe --eee-justextract

This creates the directory bin (with the files ruby.exe, rubyw.exe and *.dll), the directory

lib (with the dependencies *.rb and *.s0), the directory app (with the file application.rb

(your script) or the application directory) and the files app.eee and eee.exe (or eeew.exe) in
the current directory.

It's possible to run your application again with:

c:\home\erik> bin\ruby.exe -r .\bootstrap.rb -T1 empty.rb .\app\ application .rb

If the application does a Dir.chdir, try this:

c:\home\erik> bin\ruby.exe -r .\bootstrap.rb -T1 empty.rb
c: \full \path \to \app\ application .rb

After hacking app.eee, if necessary, you can "compile" your application again with:

RubyScript2Exe - A Ruby Compiler 11

3. Usage

c:\home\erik> eee.exe app.eee newapplication .exe
or
c:\home\erik> eeew.exe app.eee newapplication .exe

On Linux, it's pretty much the same.

$./ application _linux --eee-justextract

$ export PATH=./bin:$PATH

$ export LD_LIBRARY_PATH=./bin:$LD_LIBRARY_PATH

$ chmod +x ./bin/*

$./bin/ruby -r ./bootstrap.rb -T1 empty.rb ./app/ application

$.Jeee_linux app.eee newapplication _linux

RubyScript2Exe - A Ruby Compiler

.rb

12

4. Examples

4.1. Distributions

I ran RubyScript2Exe with four different Ruby distributions (Ruby 1.8.1) on Windows and two
versions of Ruby (1.6.7 and 1.8.2) on Linux:

Distribution Size (bytes
Cygwin 1287227
Rubylnstaller 641840
MinGW 428898
MSWin32 467110
Linux, Ruby 1.6.7|551858
Linux, Ruby 1.8.2|574015

The details can be found here.

The test script was nothing more than a little Hello World thing (And the require "rbconfig

was just an extra test item...):

require "rbconfig"

puts "Hello World!"

RubyScript2Exe - A Ruby Compiler

13

http://www.cygwin.com/
http://rubyinstaller.rubyforge.org/wiki/wiki.pl
http://ftp.ruby-lang.org/pub/ruby/binaries/mingw/
http://ftp.ruby-lang.org/pub/ruby/binaries/mswin32/

5. License

5.1. License of RubyScript2Exe
RubyScript2Exe, Copyright (C) 2003 Erik Veenstra <rubyscript2exe@erikveen.dds.nl>

This program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License (GPL), version 2, as published by the Free Software Foundation.

This program is distributed in the hope that it will be useful, but without any warranty; without

even the implied warranty of merchantability or fitness for a particular purpose. See the GNU
General Public License (GPL) for more details.

You should have received a copy of the GNU General Public License (GPL) along with this program;
if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

The full text of the license can be found here.

5.2. License of your Application

Whatever...

RubyScript2Exe - A Ruby Compiler 14

mailto:rubyscript2exe@erikveen.dds.nl

6. Download

Current version is 0.5.3 (29.05.2007). It's a stable release.
Tested on:

* Red Hat Linux 8.0 with Ruby 1.6.7

* Red Hat Linux 8.0 with Ruby 1.8.1

* Red Hat Linux 8.0 with Ruby 1.8.2

* Windows 95 with Ruby 1.8

» Windows 98 with Ruby 1.6 (Very slow!)
* Windows 98 with Ruby 1.8

* Windows 2000 with Ruby 1.8

» Windows 2000 with Ruby 1.8 (Cygwin)
* Windows XP with Ruby 1.8

* Windows XP with Ruby 1.8 (Cygwin)

You only need rubyscript2exe.rb . It's the current version, packed as an RBA (Ruby Archive, built by
Tar2RubyScript) and works on both Windows and Linux. You can download rubyscript2exe.tar.gz if
you want to play with the internals of RubyScript2Exe. RubyScript2Exe is available as
rubyscript2exe.gem as well.

Send me reports of all bugs and glitches you find. Propositions for enhancements are welcome, too.
This helps us to make our software better.

A change log and older versions can be found here. A generated log file can be found here.

RubyScript2Exe is available on SourceForge.net and on RubyForge .

6.1. Mac OS X (Darwin)

I included (experimental) support for Darwin. The Ruby code in the above mentioned packages is
able to handle Darwin, but the packages don't include EEE for Darwin. (They would be too big...) For
now, you have to compile it yourself:

1. Get eee.pas from the archive.
2. Download the compiler.

3. Compile (fpc -Xs -B eee.pas).
4. Rename eee to eee_darwin.

(I've put a precompiled eee_darwin on my site, but it may be newer than (and therefor incompatible with) the released Ruby code.)

RubyScript2Exe searches for eee_darwin (or eee_linux or eee.exe or eeew.exe) in 3
locations:

1. In rubyscript2exe.rb (or rubyscript2exe/ when using

rubyscript2exe.tar.gz).
2.In the directory in which rubyscript2exe.rb is located.

RubyScript2Exe - A Ruby Compiler 15

http://sourceforge.net/projects/rubyscript2exe/
http://rubyforge.org/projects/rubyscript2exe/
http://www.freepascal.org/fpcmac.html

6. Download

3.In the current directory.

This means that you can simply put eee_darwin in the same directory as rubyscript2exe.rb
(location 2) or in the current directory (location 3).

If you want to repackage RubyScript2Exe (location 1) with an embedded eee_darwin, do this:

1. Extract rubyscript2exe.tar.gz, or extract rubyscript2exe.rb (rublyyscript2exe.rb
--tar2rubyscript-justextract)

2. Copy eee_darwin to rubyscript2exe/.

3. Recreate rubyscript2exe.rb (rubtar2rubyscript.rb rubyscript2exe/)
(optional)

RubyScript2Exe - A Ruby Compiler 16

7. Known Issues

» Don't use long application names (as in thisisalongnameofanapplication.rb).

Long application names result in non-working executables. Somehow gzread, used to read
a block from the archive, returns -2 if
"#{eeedirf\eee.#{application}.exe.2\\eee.gz".length >= 80.

* RubyScript2Exe is tested with RubyGems 0.9.0. It might be necessary to add include
"fileutils" in your application.

« If you someday run into trouble when trying to generate RDOC documentation from within
the generated executable, have a look at Zoran Lazarevic's page.

» Because of the way Ruby is started from within RubyScript2Exe on Linux, $stdin doesn't
work anymore. On Windows, it works. FIXED IN 0.3.4!

* My latest change in RubyScript2Exe was to ignore RUBYOPT when running the generated
executable. This means that | do generate the fake rubygems.rb and do embed it into the
executable, but it isn't necessarily required by anything in the application or in the
environment. So, you have to do a require "rubygems" explicitly in your application,
when using one or more gems. FIXED IN 0.3.3!

* Running the generated executable from within a non-SH-compatible shell (e.g. TCSH), is
currently not possible. FIXED IN 0.3.3!

* There is a problem when running the generated executable in an environment in which the
environment variable RUBYOPT is set. (The One-Click Ruby Installer (ruby182-14.exe)
does this.) The embedded ruby.exe encounters RUBYOPT and tries to load the mentioned
libraries (e.g. ubygems) which it obviously can't find, because the search paths are pointing
to the embedded environment and not to the original environment. So, creating an executable
in an environment in which RUBYOPT is set is not a problem, whereas running the generated
executable in such an environment is a problem. The workaround is to open a DOS-box, do a
set RUBYOPT= and run the executable from within the DOS-box. FIXED IN 0.3.2!

RubyScript2Exe - A Ruby Compiler 17

http://lazax.com/blog/archives/000085.html

	Table of Contents
	RubyScript2Exe
	A Ruby Compiler

	1. Introduction
	2. Internals
	2.1. RubyScript2Exe
	2.2. EEE

	3. Usage
	3.1. Compiling the Application
	3.2. Running the Application
	3.3. From Inside your Application
	a) RUBYSCRIPT2EXE.(dlls|bin|lib)=
	b) RUBYSCRIPT2EXE.tempdir=
	c) RUBYSCRIPT2EXE.tk=
	d) RUBYSCRIPT2EXE.rubyw=
	e) RUBYSCRIPT2EXE.strip=
	f) RUBYSCRIPT2EXE.is_compil(ing|ed)?
	g) RUBYSCRIPT2EXE.appdir
	h) RUBYSCRIPT2EXE.userdir
	i) RUBYSCRIPT2EXE.exedir
	j) RUBYSCRIPT2EXE.executable
	k) Information about EEE

	3.4. Tips & Tricks
	a) Just Scanning, no Running
	b) Logging
	c) Hacking on Location

	4. Examples
	4.1. Distributions

	5. License
	5.1. License of RubyScript2Exe
	5.2. License of your Application

	6. Download
	6.1. Mac OS X (Darwin)

	7. Known Issues

