
QEMU-Puppy - A Personal Portable Computer

Table of Contents
QEMU-Puppy...1

A Personal Portable Computer...1

1. Introduction..2

2. Ingredients..6
2.1. Puppy Linux...6
2.2. QEMU..6
2.3. SysLinux..7

3. Installation..8
3.1. QEMU-Puppy..8
3.2. QEMU Accelerator Module (KQEMU)..10

4. Booting..12
4.1. QEMU-Puppy on Metal (QPM)..12
4.2. QEMU-Puppy on Linux (QPL)...12
4.3. QEMU-Puppy on Windows (QPW)..13

5. Configuration...14
5.1. Keyboard..14
5.2. Video..14
5.3. Network...14

a) DHCP...14
b) Hosts File...14

5.4. Clean Configuration...14

6. Tips & Tricks...15
6.1. File Transfer...15

a) FTP...15
b) TAR + NC..16
c) QPL..17
d) QPW...17

6.2. Resizing pup_save.3fs...18
a) Linux and Cygwin..18
b) Windows..18

6.3. Installing other Software..18
a) Ruby...20
b) Vim..20
c) HTMLDOC..20

6.4. Cloning...21

7. DotPups...23

8. Internals..24
8.1. Patches of Puppy Linux...24
8.2. AllInOneQEMU...24
8.3. puppy.exe...24

QEMU-Puppy - A Personal Portable Computer i

Table of Contents
9. License...25

10. Known Issues..26

Notes..27

QEMU-Puppy - A Personal Portable Computer ii

QEMU-Puppy

A Personal Portable Computer

Tue Sep 18 18:40:16 UTC 2007
Erik Veenstra <qemupuppy@erikveen.dds.nl>

QEMU-Puppy - A Personal Portable Computer 1

mailto:qemupuppy@erikveen.dds.nl

1. Introduction
QEMU-Puppy is an OS and a set of applications on a USB memory stick. This OS can be booted
natively, or on top of an other, already installed, OS. Just borrow a PC, boot your own environment
and return the PC unaffected.

"No installation, no garbage..."

Once upon a time, I realized that having your data on a USB memory stick wasn't exactly what I
wanted. I wanted more. Carrying your files is nice. Carrying your applications as well would be even
better. What the heck, carrying your OS and even your own machine on your memory stick would be
the best!

If you have your files on your memory stick, you can take any machine and access those files. Being
able to handle the files, depends on the installed software. If you don't want to depend on the installed
software, you can put your own software on the memory stick as well. But most of the software needs
to be installed, which is not easy, or possible, or desirable, or allowed on a lot of machines. You don't
want to pollute a machine you borrowed... Having a complete OS at hand, including applications and
settings and user data would take away these constraints. Just put everything on a USB memory stick
and boot from it.

But...

A bootable USB memory stick has some disadvantages as well. First of all, not every PC is able to
boot from USB. Second, if the machine does boot from USB, not all hardware is detected or
configured properly, since the hardware "changes" every day. Third, booting from USB "locks" the
machine: It's either the already installed OS or your OS, not both at the same time.

To get rid of these disadvantages, you can carry your own machine as well, not just your OS and your
applications and your settings and your user data. You can do this by buying a laptop. But it's
expensive, a physical burden and risky. The USB memory stick is cheap, light and easier to protect. A
virtual machine , like QEMU, is cheap, light and easy to protect as well. With such a virtual machine,
we are able to boot our OS on top of the already installed OS. Now we have two OS's running
concurrently on one machine! ALT-TAB is enough to hide your machine and get back to work...

The tricky part is trying to have the OS on your USB memory stick to be able to boot both natively
and in a virtual machine. But it can be done. And that's what makes QEMU-Puppy unique.

QEMU-Puppy - A Personal Portable Computer 2

(Here you can see QEMU-Puppy, running on top of a (not visible) native Linux installation.)

1. Introduction

QEMU-Puppy - A Personal Portable Computer 3

(Here you can see QEMU-Puppy, running in QEMU-Puppy, which in turn runs on top of a (not visible) native Linux installation. A stack of
3 Linux installations...)

1. Introduction

QEMU-Puppy - A Personal Portable Computer 4

(Here you can see a two baskets full of puppies. Sixteen of them on a 1 GB Linux box and another sixteen on a 2 GB Windows box.)

1. Introduction

QEMU-Puppy - A Personal Portable Computer 5

2. Ingredients
(These ingredients come with QEMU-Puppy. You don't have to download or install them yourself.)

2.1. Puppy Linux

There are a lot of medium sized Linux distributions out there. A lot of them could be used for our
purpose. I've chosen Puppy Linux, because it's flexible, it simply works and because it "feels good"...

The mission statements of Puppy Linux are (copied from the site):

Puppy will easily install to USB, Zip or hard drive media.•
Booting from CD, Puppy will load totally into RAM so that the CD drive is then free for
other purposes.

•

Booting from CD, Puppy can save everything back to the CD, no need for a hard drive.•
Booting from USB, Puppy will greatly minimize writes, to extend the life of Flash devices
indefinitely.

•

Puppy will be extremely friendly for Linux newbies.•
Puppy will boot up and run extraordinarily fast.•
Puppy will have all the applications needed for daily use.•
Puppy will just work, no hassles.•
Puppy will breathe new life into old PCs•

See the Puppy Linux site for more information about Puppy Linux.

Version used in QEMU-Puppy: 2.17.

(I've never released a version of QEMU-Puppy based on Puppy Linux 1.0.8, because the version of JWM used in Puppy Linux 1.0.8 is
terribly slow.)

2.2. QEMU

From the site: "QEMU emulates a full system (for example a PC), including a processor and various
peripherals. It can be used to launch different Operating Systems without rebooting the PC or to
debug system code."

In other words: QEMU is a virtual machine. A virtual machine is a program that acts like computer
hardware. In such a virtual machine, you can install an OS (Linux, Windows, BSD, whatever). This
OS "sees" a processor, which is the real processor (I'm lying...), "sees" a hard drive, which is a big file
on the host machine, "sees" a network card, which is emulated by QEMU, and so on. After shutting
down the virtual machine, all that's left on the host (or USB memory stick) is just one big file: the
virtual hard disk.

From the point of view of the host OS, QEMU is just a simple program which allocates a lot of
memory, eats a lot of CPU cycles and opens and closes a couple of files. That's it.

See the QEMU site for more information about QEMU.

QEMU-Puppy - A Personal Portable Computer 6

http://www.puppyos.com/development/howpuppyworks.html
http://fabrice.bellard.free.fr/qemu/

Version used in QEMU-Puppy: 0.9.0.

2.3. SysLinux

SYSLINUX is a boot loader for the Linux operating system which operates off an MS-DOS/Windows
FAT filesystem.

See the SysLinux site for more information about SysLinux.

2. Ingredients

QEMU-Puppy - A Personal Portable Computer 7

http://syslinux.zytor.com/

3. Installation

3.1. QEMU-Puppy

QEMU-Puppy can be used and distributed under the terms of the GNU General Public License
(GPL).

(You might want to backup your old pup_save.3fs first...)

1. Download qemu-puppy-2.17-1.tar.gz (86M): torrent:linuxtracker.org or
http:SourceForge.

2. Copy all 20 files (214M) in qemu-puppy-2.17-1.tar.gz to the root of your VFAT/FAT32
formatted 256M (or more) USB memory stick.

3. Then do something like "syslinux /dev/sda1" (as root) or "D:\syslinux D:" to make
your device bootable. SysLinux puts ldlinux.sys on the device as well. (See the SysLinux
site and PuppyLinuxWiki in case you run into trouble... Don't ask me!) [1] (If you want to boot
from USB natively.)

That's it. If you double click puppy.exe (Windows) or run . ./puppy.sh (Linux),
QEMU-Puppy should start. You can stop reading now, if you're satisfied...

You can check the integrity of qemu-puppy-2.17-1.tar.gz with
qemu-puppy-2.17-1.md5sum.txt:

md5sum -vc qemu-puppy-2.17-1.md5sum.txt

The md5sums of the individual files (except pup_save.3fs and ldlinux.sys) of the current
version are listed in qemu-puppy-2.17-1.md5sums.txt.

Each file in qemu-puppy-2.17-1.tar.gz is described in the table below.

File Description Origin QPM QPL QPW

allinoneqemu.exe Complete QEMU executable
for Windows

Me (but the
contents is from
QEMU)

R

allinoneqemu_linux Complete QEMU executable
for Linux

Me (but the
contents is from
QEMU)

R

devx_217.sfs An empty replacement for the
original devx_217.sfs

Me R R R

devx_217.sfs.empty An empty sfs (SquashFS) Me

ftpserver_qemu.exe The FTP server, accessible
from within the virtual
machine (experimental)

Me

ftpserver_qemu_linux The FTP server, accessible Me

QEMU-Puppy - A Personal Portable Computer 8

https://sourceforge.net/project/showfiles.php?group_id=160696
http://syslinux.zytor.com/
http://syslinux.zytor.com/
http://puppylinux.org/wikka/USBKeysTroubleBooting

from within the virtual
machine (experimental)

initrd.gz Initial ramdisk (EXT2,
mounted on /dev/ram0,
which becomes /)

Puppy Linux
(patched)

R R R

kqemu.inf QEMU Accelerator Module
installation file

QEMU R

kqemu.sys QEMU Accelerator Module QEMU R

ldlinux.sys Second stage bootloader SysLinux R

puppy.exe Bootstrapping program for
Windows

Me R

puppy.sh Bootstrapping script for
Linux

Me R

pup_save.3fs.empty.gz An empty pup_save.3fs Me

pup_save.3fs User data (EXT3, 128M) Me W W W

pup_217.sfs Applications (SquashFS) Puppy Linux R R R

readme.txt Just read it... Me

syslinux.cfg Boot configuration for
SysLinux

Puppy Linux R

syslinux.exe SysLinux SysLinux R

vmlinuz Linux kernel Linux R R R

zdrv_217.sfs Additional Drivers Puppy Linux R R R
(QPM = QEMU-Puppy on Metal, QPL = QEMU-Puppy on Linux, QPW = QEMU-Puppy on Windows. R = Read-only, W = Read-Write)

You should end up having these files on your stick (sizes may differ):

$ ls -l
total 219896
-rwxr-xr-x 1 erik erik 1111600 2007-02-18 13:43 allinoneqemu.exe
-rwxr-xr-x 1 erik erik 934195 2007-02-18 08:53 allinoneqemu_linux
-rwxr-xr-x 1 erik erik 4096 2007-01-02 22:34 devx_217.sfs
-rwxr-xr-x 1 erik erik 4096 2006-12-25 00:58 devx_217.sfs.empty
-rwxr-xr-x 1 erik erik 851666 2007-01-03 17:04 ftpserver_qemu.exe
-rwxr-xr-x 1 erik erik 932445 2007-01-03 17:04 ftpserver_qemu_linux
-rwxr-xr-x 1 erik erik 975489 2007-08-07 20:11 initrd.gz
-rwxr-xr-x 1 erik erik 1616 2007-02-18 13:38 kqemu.inf
-rwxr-xr-x 1 erik erik 123939 2007-02-06 22:02 kqemu.sys
-rwxr-xr-x 1 erik erik 8236 2006-06-09 10:31 ldlinux.sys
-rwxr-xr-x 1 erik erik 65646592 2007-07-19 05:12 pup_217.sfs
-rwxr-xr-x 1 erik erik 163540 2007-08-07 11:46 puppy.exe
-rwxr-xr-x 1 erik erik 382 2007-08-07 11:46 puppy.sh
-rwxr-xr-x 1 erik erik 134217728 2007-08-07 20:11 pup_save.3fs
-rwxr-xr-x 1 erik erik 140260 2007-01-03 23:01 pup_save.3fs.empty.gz
-rwxr-xr-x 1 erik erik 1828 2007-08-07 20:21 readme.txt
-rwxr-xr-x 1 erik erik 129 2007-08-05 17:54 syslinux.cfg
-rwxr-xr-x 1 erik erik 29184 2006-09-25 22:52 syslinux.exe
-rwxr-xr-x 1 erik erik 1773256 2007-07-19 05:02 vmlinuz
-rwxr-xr-x 1 erik erik 17948672 2007-07-19 05:06 zdrv_217.sfs

3. Installation

QEMU-Puppy - A Personal Portable Computer 9

pup_save.3fs contains the user data and can be mounted as a loopback device on any Linux
machine. You don't depend on QEMU-Puppy to get access to your files. (That's pup_save.3fs
and not pup001!)

The size of pup_save.3fs is 128 MB by default. You might want to replace it by a bigger one.
But that does have two drawbacks. First, Puppy-Linux is designed to use half the memory (of either
the physical machine or the virtual machine (QEMU)) as a ramdisk. This ramdisk is the highest (and
only writable) level of the union-FS stack. On shut down, this highest level (ramdisk) is merged down
to the second highest level (which is pup_save.3fs). In other words, when you get a "disk full" error in
Puppy-Linux, this usually only means that the ramdisk is full, while pup_save.3fs is not yet full.
Rebooting the system merges the ramdisk down to pup_save.3fs and offers you an empty ramdisk.
Second, Puppy-Linux doesn't check if pup_save.3fs has enough room to successfully merge the
ramdisk down to pup_save.3fs! These two issues are general Puppy-Linux issues and not
QEMU-Puppy specific issues.

To create a bigger pup_save.3fs, do this on your native Linux system:

$ dd if=/dev/zero of=pup_save.3fs bs=1k count=800
$ mkfs.ext3 pup_save.3fs

devx_217.sfs is replaced by an empty version, just to save space. You don't really need its
contents, anyway (unless you're a developer and want to compile programs yourself). If you want to
use the real devx_217.sfs, simply download it from the Puppy Linux site and overwrite my
empty version. Make sure that there's always a devx_217.sfs on your stick, either the empty one
or the original one. QEMU-Puppy simply doesn't boot if it can't find one.

3.2. QEMU Accelerator Module (KQEMU)

(You don't need this to run QEMU-Puppy. But if you want to improve performance, read on...)

QEMU has 3 different speed levels:

QEMU1.
QEMU + KQEMU2.
QEMU + KQEMU + -kernel-kqemu3.

QEMU and KQEMU are programs. -kernel-kqemu is an option of QEMU.

QEMU-Puppy's default speed level is 1.

Is QEMU-Puppy a risk for your Windows environment? Well, QEMU itself (and thus QEMU-Puppy)
is just another program, seen from the perspective of the native OS. It opens a couple of files, does
some networking, eats a lot of CPU cycles and consumes an enormous amount of memory. In other
words, an ordinary Windows program.

KQEMU on the other hand, is a driver and, as such, becomes part of the OS. That is a risk. (I once
killed a Windows 2000 installation by doing this...) You need administrator rights to add KQEMU to
your kernel.

3. Installation

QEMU-Puppy - A Personal Portable Computer 10

Use KQEMU at your own risk!

Using -kernel-kqemu even adds some more risk to the scene: I'm able to use it on a Windows
2000 machine, but it crashes another one...

What is this QEMU Accelerator Module? From the site: "The QEMU Accelerator Module increases
the speed of QEMU when a PC is emulated on a PC. It runs most of the target application code
directly on the host processor to achieve near native performance."

(It's not about the KDE GUI for QEMU; it's about the QEMU Accelerator Module.)

Although KQEMU is a major improvement over plain QEMU-Puppy, it does have a couple of
disadvantages:

You need administrator rights in order to be able to load the KQEMU module.•
By loading the KQEMU module, you pollute the host machine. Even worse, you pollute its
kernel, on a very low level. One of the base principles of QEMU-Puppy is to return the host
machine unaffected.

•

If you have full control over the host machine, you can download and install the accelerator by hand.

On Windows:

Use Windows explorer to navigate to your USB memory stick.•
Right-click on kqemu.inf and install it.•
Reboot your system. (Maybe not, probably yes...)•
Open a DOS-box and enter net start kqemu. You need to do this after every reboot. So,
you might want to do this in your startup scripts. Or start it via Windows Services.

•

On Linux, follow the instructions as given by Fabrice to compile and install (both QEMU and)
KQEMU yourself. KQEMU should be compiled against exactly the right kernel version.
QEMU-Puppy (puppy.sh) knows how to find your home-built qemu.

On Linux, I have to run the following commands (as root) after every reboot. I don't know why, but,
hey, who cares? Simply add it to /etc/rc.local.

$ mknod /dev/kqemu c 250 0
$ chmod 666 /dev/kqemu

For even better performance, you might want to start puppy.sh or puppy.exe with
-kernel-kqemu. This dramatically improves performance. Really. But... I was able to kill the host
OS (Windows only... Linux works fine.) on several occasions. Use it at your own risk! Don't blame
me!

You don't need to install any additional files on you stick. Installing KQEMU is all about "upgrading"
the host. It's not about upgrading QEMU-Puppy itself.

3. Installation

QEMU-Puppy - A Personal Portable Computer 11

http://fabrice.bellard.free.fr/qemu/kqemu-doc.html

4. Booting
(You might want to read the section Configuration, before booting QEMU-Puppy for the first time.)

4.1. QEMU-Puppy on Metal (QPM)

Nothing new here. It's just plain old Puppy Linux. Simply boot your machine from the USB memory
stick.

4.2. QEMU-Puppy on Linux (QPL)

To boot QEMU-Puppy on Linux, use this:

$. ./puppy.sh

(You probably need to source the script with ".", because the permissions of puppy.sh can't be set properly as a result of the underlying
VFAT/FAT32 file system.)

Or this:

$ QEMU=/tmp/allinoneqemu_linux.$$

$ cp allinoneqemu_linux $QEMU
$ chmod +x $QEMU
$ trap "rm -f $QEMU" 0

$ $QEMU -kernel vmlinuz \
 -initrd initrd.gz \
 -append root=/dev/ram0 \
 -hda pup_save.3fs \
 -hdb pup_217.sfs \
 -hdc devx_217.sfs \
 -hdd zdrv_217.sfs \
 -m 256 \
 -localtime

(This means that QEMU is started in full system emulation mode.)

Because Puppy Linux, running in QEMU, can't access files on the USB memory stick directly, we
abuse /dev/hda to access pup_save.3fs, /dev/hdb to access pup_217.sfs, /dev/hdc to
access devx_217.sfs and /dev/hdd to access zdrv_217.sfs. The rc.sysinit in
initrd.gz that comes with Puppy Linux is patched to handle this.

QEMU-Puppy - A Personal Portable Computer 12

4.3. QEMU-Puppy on Windows (QPW)

To boot QEMU-Puppy on Windows, use this:

D:\> puppy.exe

Or this:

D:\> allinoneqemu.exe -kernel vmlinuz \
 -initrd initrd.gz \
 -append root=/dev/ram0 \
 -hda pup_save.3fs \
 -hdb pup_217.sfs \
 -hdc devx_217.sfs \
 -hdd zdrv_217.sfs \
 -m 256 \
 -localtime

(Since QEMU-Puppy 2.02-1, the boot mechanisms of QPL and QPW are the same.)

4. Booting

QEMU-Puppy - A Personal Portable Computer 13

5. Configuration
(I only mention QEMU-Puppy specific configurations for using QEMU-Puppy in QEMU mode. The configuration of QEMU-Puppy when
running on metal depends on the available hardware.)

5.1. Keyboard

Should be US, since that's the default keyboard QEMU emulates.

5.2. Video

Always use Xvesa and not Xorg. Running in 16 bit color mode is probably a bit faster than running in
24 bit color mode. I use 800x600x16 myself.

5.3. Network

a) DHCP

QEMU has a built-in DHCP server and gives QEMU-Puppy IP address 10.0.2.15.

Don't try to reach the virtual machine (10.0.2.15) from the host OS. You simply can't. QEMU is
aware of the subnet it created in its own environment (10.0.2.0/24). The host OS isn't and can't be. But
reaching the host machine or the Internet from within the virtual machine isn't a problem.

b) Hosts File

I added the following lines to /etc/hosts:

10.0.2.2 qemuserver
10.0.2.4 smbserver

Both refer to the host machine.

5.4. Clean Configuration

If you want to go back to plain old Puppy-Linux default settings, do this:

$ gzip -d < pup_save.3fs.empty.gz > pup_save.3fs

QEMU-Puppy - A Personal Portable Computer 14

6. Tips & Tricks

6.1. File Transfer

a) FTP

FTP servers are a problem. I'll explain. It is possible to initiate a TCP/IP connection to the outside
world from within QEMU. It's not possible to initiate a TCP/IP connection from the outside world to
the virtual machine in QEMU (unless you run in TUN/TAP mode). That's because QEMU emulates a
network and the host machine (and other machines) doesn't know and can't know about the existence
of this network (10.0.2.0/24). The host machine doesn't know where to find 10.0.2.15.

The FTP protocol has two kind of connections: the control connection and data connections. The
control connection is initiated by the client and stays alive throughout the whole session. The data
connection comes in two flavors: active and passive. Active data connections are initiated by the FTP
server, whereas passive data connections are initiated by the client. Since an FTP server on the LAN
can't find the virtual machine in QEMU, we can't use active mode. So we use passive mode.

But... A big "but"... (A big butt?...)

When the client tells the server to switch to passive mode, the server replies with IP:PORT on which
it listens for a data connection. This can be e.g. 192.168.2.123:2121 (a LAN IP address) or e.g.
127.0.0.1:2121 (the localhost), depending on the origin of the connection. Since QEMU masquerades
the outbound connections to the local machine as local traffic, it connects to 127.0.0.1. As a response
on the request, the natively running server opens a data connection on 127.0.0.1 and tells the client
that it did so in its reply. The FTP client in QEMU parses this reply and tries to open a data
connection to 127.0.0.1, which is the virtual machine itself and not the host! That won't work! There's
no workaround, other than hacking the code of the server or building an FTP server yourself (which I
did...).

I've written an (experimental) FTP server myself, which listens on port 2121 and replies with
10.0.2.2:2121 instead of 127.0.0.1:2121. That does the trick. This server should be started by hand
(ftpserver_qemu.exe or ftpserver_qemu_linux); it isn't started automatically. Now the
files on the pen drive (more specific: the directory in which you started the server), but outside
pup_save.3fs, are accessible from within the virtual machine on ftp://10.0.2.2:2121/.
(But not from the host itself!) I've tested this with gFTP and with Midnight Commander (my
favorite):

$ wget http://www.erikveen.dds.nl/qemupuppy/dotpups/mc.pup
$ rox mc.pup

Start the FTP server on the native machine by double clicking on ftpserver_qemu.exe (or by
starting ftpserver_qemu_linux). Once it's started, you can start your favorite FTP client, in
QEMU-Puppy, and connect to the server with the following settings:

Setting Value

Hostname

QEMU-Puppy - A Personal Portable Computer 15

http://www.ibiblio.org/mc/
http://www.erikveen.dds.nl/qemupuppy/dotpups/mc.pup

qemuserver
or
10.0.2.2

Port 2121

User anything you want

Password anything you want

ftpserver_qemu only offers its services to all application running in QEMU-Puppy (QPL or
QPW). Other clients (running natively or on another machine) can't access the server.

(The next step/experiment is to mount this FTP server on /usb_data using LUFS or FUSE.)

b) TAR + NC

My favorite way to transfer files between two machines is the combination of TAR and NC,
optionally using an SSH tunnel. TAR is a tool to convert a bunch of files and directories into a byte
stream, vice versa. NC (NetCat) is a tool to push a byte stream through an IP network. Combining
them lets us push files and directories through a network.

Upload to QEMU-Puppy:

$ tar cv files | nc -l -p 1234 -w 10 # On host
$ nc qemuserver 1234 | tar xv # On guest (QEMU-Puppy)

Download from QEMU-Puppy:

$ nc -l -p 1234 -w 10 | tar xv # On host
$ tar cv files | nc qemuserver 1234 # On guest (QEMU-Puppy)

Linux usually comes with both TAR and NC. For Windows users, I provided tar.exe and
nc.exe.

This is a general approach to moving data between two machines, platform agnostic. And it can be
used over real networks as well. (Optionally using SSH for tunneling.) Once you get it, you can
transfer files across networks, cross platform, through firewalls, into and out of virtual machines. No
installation, no configuration (except for punching a hole in the firewall to let the SSH traffic go
through). Always the same key strokes. Lightweight, simple and elegant.

6. Tips & Tricks

QEMU-Puppy - A Personal Portable Computer 16

c) QPL

I installed Samba on my local machine and patched /etc/rc.d/rc.local in my own version of
QEMU-Puppy:

mkdir /scratch

smbmount //smbserver/qemu /scratch -o guest

So my host /scratch is shared with /scratch in QEMU-Puppy, when I start it like this:

$. ./puppy.sh -smb /scratch

(Does this still work in QEMU-Puppy 2.xx?)

d) QPW

Although SMB is a Microsoft protocol and we can use it to transfer files from Linux to Linux, as
described in the previous section, it's not possible to use it for sharing a directory when running in
QPW mode. There are a couple of reasons for this, most noticeably the hard coded ports used for

6. Tips & Tricks

QEMU-Puppy - A Personal Portable Computer 17

SMB. This means that we have to use FTP or TAR + NC to transfer files from host to virtual machine
and vice versa.

6.2. Resizing pup_save.3fs

a) Linux and Cygwin

$ ls -lh pup_save.3fs
-rwxr-xr-x 1 erik erik 128M 2007-08-29 16:43 pup_save.3fs

$ resize2fs -f pup_save.3fs 512M
resize2fs 1.39 (29-May-2006)
Resizing the filesystem on pup_save.3fs to 524288 (1k) blocks.
The filesystem on pup_save.3fs is now 524288 blocks long.

$ ls -lh pup_save.3fs
-rwxr-xr-x 1 erik erik 512M 2007-08-29 16:45 pup_save.3fs

b) Windows

(If you're a Cygwin user, see the previous section.)

On Windows, you're pretty much on your own. I'm not a Windows user. I can't help you. Really, I
can't...

But I do have a couple of links:

http://www.acc.umu.se/~bosse/

http://www.fs-driver.org/index.html

http://colinux.wikia.com/wiki/ExpandingRoot

6.3. Installing other Software

Sometimes, you don't want to depend on DotPup or PupGet... And compiling everything yourself isn't
funny, either...

In case we have an other Linux system on our network, e.g. QEMU-Puppy in QPL mode, we could
try to copy the files of an application, e.g. Ruby, to the right locations on the Puppy Linux system. If
the versions of the libraries and the kernel of the source system are close enough to the ones of Puppy
Linux, it might even be possible to run the "imported" application. So, let's try it.

First problem: Which files do we need to copy?

With the following commands, we can guess the files that belong to the application:

$ APP=ruby
$ ls -d /usr/*/$APP* /usr/local/*/$APP*

Because an executable usually depends on some libraries, we investigate them as well:

6. Tips & Tricks

QEMU-Puppy - A Personal Portable Computer 18

http://www.acc.umu.se/~bosse/
http://www.fs-driver.org/index.html
http://colinux.wikia.com/wiki/ExpandingRoot
http://www.puppyos.com/development/package-management.htm

$ ldd $(which $APP)

And because libraries usually depend on other libraries, we do it recursively.

Notice that these libraries are often symbolic links to other files. Don't forget to copy them as well.

It might be a good idea to exclude the files that already exist in Puppy Linux.

According to this and this, the files listed below should be available on a Linux Standard Base system.
So we can skip them.

libX11.so.6•
libXt.so.6•
libGL.so.1•
libXext.so.6•
libICE.so.6•
libSM.so.6•
libdl.so.2•
libcrypt.so.1•
libz.so.1•
libncurses.so.5•
libutil.so.1•
libpthread.so.0•
libpam.so.0•
libgcc_s.so.1•

libm.so.6•
libdl.so.2•
libcrypt.so.1•
libc.so.6•
libpthread.so.0•
ld-lsb.so.1•

On my system, we have to import the following file and directory to install Ruby:

/usr/local/bin/ruby•
/usr/local/lib/ruby/•

Second problem: How do we import the files?

We can use one of the methods already described, or we can use the following scripts in Puppy Linux
to import the files. importroot imports files relative to the root (= /) on both systems.
importhome imports files relative to the home directories on both systems.

$ echo 'ssh erik @qemuserver tar c -C / $* | tar x -C /' > importroot
$ echo 'ssh erik @qemuserver tar c $* | tar x -C ~' > importhome
$ chmod +x importroot
$ chmod +x importhome

In this case, we have to use importroot:

6. Tips & Tricks

QEMU-Puppy - A Personal Portable Computer 19

http://www.linuxbase.org/spec/refspecs/LSB_1.3.0/gLSB/gLSB/rlibraries.html
http://www.linuxbase.org/spec/refspecs/LSB_1.3.0/IA32/spec/rlibraries.html

$./importroot /usr/local/bin/ruby /usr/local/lib/ruby/

In theory, we now have installed Ruby:

$ ruby -v
ruby 1.8.3 (2005-09-21) [i686-linux]

So, yes, we did...

I did the same trick for a couple of other applications, of which the files are listed below.

Oh, by the way, my host system runs Ubuntu Linux 5.04.

a) Ruby

Import the following files to install Ruby:

/usr/local/bin/ruby•
/usr/local/lib/ruby/•

b) Vim

Import the following files to install Vim:

/usr/bin/vim•
/usr/bin/vimdiff•
/usr/bin/vimtutor•
/usr/lib/libgpm.so.1•
/usr/lib/libgpm.so.1.19.6•
/usr/share/vim/•

We want to get rid of the old version of VI, which comes with Puppy Linux:

$ mv /bin/vi /bin/vi.old
$ ln -sf /usr/bin/vim /bin/vi

And because all files in /bin and /lib are lost after a reboot, we have to add these lines to
/etc/rc.d/rc.local as well:

$ echo '' >> /etc/rc.d/rc.local
$ echo 'mv /bin/vi /bin/vi.old' >> /etc/rc.d/rc.local
$ echo 'ln -sf /usr/bin/vim /bin/vi' >> /etc/rc.d/rc.local

c) HTMLDOC

Import the following files to install HTMLDOC:

/usr/bin/htmldoc•
/usr/lib/libexpat.so.1•
/usr/lib/libexpat.so.1.0.0•

6. Tips & Tricks

QEMU-Puppy - A Personal Portable Computer 20

/usr/lib/libfltk_images.so.1.1•
/usr/lib/libfltk.so.1.1•
/usr/lib/libXft.so.2•
/usr/lib/libXft.so.2.1.1•
/usr/lib/libXrender.so.1•
/usr/lib/libXrender.so.1.3.0•
/usr/share/htmldoc/•

Because Puppy Linux comes with libpng10.so.0.1.0.15 instead of
libpng10.so.0.1.0.18, which is required by HTMLDOC, I imported the following files as
well:

/usr/lib/libpng10.so.0•
/usr/lib/libpng10.so.0.1.0.18•

6.4. Cloning

I use the following script to create a temporary instance of QEMU-Puppy on my hard drive. Kind of
cloning... All puppies can live side-by-side, concurrently, in harmony... See the screenshots in
Introduction.

$ puppyclone test_ruby_projects

Did you know that each clone on my machine only costs me about 172K of disk space (without the
user data)?

ID="$1" ; shift

TEMPDIR=~/tmp # MANDATORY
CLONEDIR=$TEMPDIR/puppyclone.$ID # MANDATORY
EXTRACTEDDIR=~/projects/qemupuppy2/main/usb # MANDATORY, this
PUPPYTARGZ=~/projects/qemupuppy2/results/qemu-puppy.tar.gz # MANDATORY, or this
DEVX=~/attic/devx_215.sfs # OPTIONAL

[! "$ID"] && {
 echo "Usage: $(basename $0) ID [--generate]"

 exit 1
}

["$1" = "--delete"] && {
 rm -rf $CLONEDIR

 echo "Puppy $ID has died."

 exit 0
}

["$1" = "--generate"] && {
 echo "Just a minute..."

 rm -rf $CLONEDIR || exit 15
 mkdir -p $CLONEDIR || exit 15

6. Tips & Tricks

QEMU-Puppy - A Personal Portable Computer 21

 if [-d "$EXTRACTEDDIR"]; then
 for f in $EXTRACTEDDIR/*; do
 [! -d "C:/"] && ln -sf $f $CLONEDIR/
 [-d "C:/"] && cp -af $f $CLONEDIR/
 done

 rm $CLONEDIR/pup_save.3fs
 cp -af $EXTRACTEDDIR/pup_save.3fs $CLONEDIR/pup_save.3fs
 # ??? cp -af ~/Desktop/pup_save_empty.3fs $CLONEDIR/pup_save.3fs # ???
 else
 nice tar xzf $PUPPYTARGZ -C $CLONEDIR
 fi

 ["$DEVX"] && {
 rm -f $CLONEDIR/$(basename $DEVX)

 [! -d "C:/"] && ln -sf $DEVX $CLONEDIR/devx_215.sfs
 [-d "C:/"] && cp -af $DEVX $CLONEDIR/devx_215.sfs
 }

 echo "Puppy $ID is born."

 exit 0
}

[! -d "$CLONEDIR"] && {
 $0 $ID --generate
}

cd $CLONEDIR || exit 16

chmod +x puppy.sh

[! -d "C:/"] && ./puppy.sh -kernel-kqemu -usbdevice tablet -smb /scratch $*
[-d "C:/"] && ./puppy.exe -usbdevice tablet $*

(This script is built for my environment. It doesn't necessarily work in yours.)

6. Tips & Tricks

QEMU-Puppy - A Personal Portable Computer 22

7. DotPups
It's not directly related to QEMU-Puppy, but I've built a couple of DotPups myself:

Download Depends
on

Package Version More information and Licenses Built

htmldoc.pup - HTMLDOC 1.8.27 http://www.htmldoc.org/ 19
January
2007

kqemu.pup - KQEMU 1.3.0pre11http://www.qemu.org/ 7
February
2007

mc.pup - GNU Midnight
Commander

4.6.1 http://www.ibiblio.org/mc/ 19
January
2007

qemu.pup sdl.pup QEMU 0.9.0 http://www.qemu.org/ 7
February
2007

ruby.pup - Ruby 1.8.5-p2 http://www.ruby-lang.org/en/ 19
January
2007

sdl.pup - SDL 1.2.11 http://www.libsdl.org/ 7
February
2007

vim.pup - VIM 7.0 http://www.vim.org/ 19
January
2007

socat.pup - Socat 2.0.0-b1 http://www.dest-unreach.org/socat/6 July
2007

Download a DotPup and install it with:

$ wget http://www.erikveen.dds.nl/qemupuppy/dotpups/ something .pup
$ rox something .pup

QEMU-Puppy - A Personal Portable Computer 23

http://www.htmldoc.org/
http://www.qemu.org/
http://www.ibiblio.org/mc/
http://www.qemu.org/
http://www.ruby-lang.org/en/
http://www.libsdl.org/
http://www.vim.org/
http://www.dest-unreach.org/socat/

8. Internals

8.1. Patches of Puppy Linux

initrd.gz contains the startup scripts of Puppy Linux. One of these scripts, /sbin/init,
searches for pup_save.3fs, pup_217.sfs, devx_217.sfs and zdrv_217.sfs. I patched
this script, so Puppy Linux knows where to look for these files in case it is booted in QEMU
(/dev/hda, /dev/hdb, /dev/hdc and /dev/hdd, respectively (see abuse)). The old
functionality (for booting from USB directly) is not affected. This patch is (for now...) kind of a
proof-of-concept and isn't really nice at all. Hopefully, the new functionality will be added to Puppy
Linux itself. Barry knows how to do it properly...

Puppy Linux sets a couple of variables in /etc/rc.d/PUPSTATE. In QPL and QPW mode, these
are left empty, except for PUPMODE (which is set to 13) and QPM (which is QEMU-Puppy specific).

I also added keyboard, video and network settings, which you probably had to do yourself in order to
be able to use QEMU-Puppy in QEMU mode. These settings are described in Configuration.

8.2. AllInOneQEMU

I used EEE to create AllInOneQEMU. EEE embeds all files QEMU needs to be able to run:
qemu.exe, sdl.dll and a couple of BIN-files. Have a look at the QEMU site for licenses and
sources.

allinoneqemu.exe and allinoneqemu_linux can be used like qemu.exe itself. At least,
that's my goal...

This is the EEE-file to build AllInOneQEMU for Windows. This is the EEE-file to build
AllInOneQEMU for Linux.

If you are on Linux and you've setup a QEMU environment yourself and qemu is available on your
$PATH, then your installation of QEMU will be used instead of allinoneqemu_linux. This
allows you to setup an environment with the QEMU Accelerator Module, which gives your Puppy a
bit more speed.

8.3. puppy.exe

This is the EEE-file to build puppy.exe. For Linux, just use puppy.sh (see QEMU-Puppy on
Linux (QPL)). There's no need for puppy_linux.

QEMU-Puppy - A Personal Portable Computer 24

http://fabrice.bellard.free.fr/qemu/
http://fabrice.bellard.free.fr/qemu/kqemu-doc.html

9. License
QEMU-Puppy, Copyright (C) 2003 Erik Veenstra <qemupuppy@erikveen.dds.nl>

This program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License (GPL), version 2, as published by the Free Software Foundation.

This program is distributed in the hope that it will be useful, but without any warranty; without
even the implied warranty of merchantability or fitness for a particular purpose. See the GNU
General Public License (GPL) for more details.

You should have received a copy of the GNU General Public License (GPL) along with this program;
if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

The full text of the license can be found here.

See the individual sites mentioned in Ingredients for the licenses the Ingredients.

QEMU-Puppy - A Personal Portable Computer 25

mailto:qemupuppy@erikveen.dds.nl

10. Known Issues
QEMU-Puppy probably won't boot natively (QPM) from USB memory sticks bigger than 1
GB. Quote from the SysLinux site: "SysLinux will not work (and will refuse to install) on
filesystems with a cluster size of more than 16K (typically means a filesystem of more than 1
GB.)"

•

QEMU-Puppy 1.0.9-1 introduced an "invisible box" in which the mouse seems to be trapped.
Making big, aggressive circles with the mouse usually frees the mouse from its jail.

•

When running in QPW mode, "grabbing keyboard and mouse" doesn't always mean
"receiving keyboard and mouse events". Somehow, the events might get queued. Doing a lot
of alt-tabs usually helps. It's probably a QEMU problem.

•

The FTP-server doesn't work with Mozilla. Use Gftp.•

QEMU-Puppy - A Personal Portable Computer 26

http://syslinux.zytor.com/

Notes

[1] The Windows version of SysLinux is included in QEMU-Puppy; the Linux version isn't, since Linux usually comes with SysLinux.

box erik erikveen erikveenstra veenstra virtual virtualbox virtualisation virtualization vmware

QEMU-Puppy - A Personal Portable Computer 27

	Table of Contents
	QEMU-Puppy
	A Personal Portable Computer

	1. Introduction
	2. Ingredients
	2.1. Puppy Linux
	2.2. QEMU
	2.3. SysLinux

	3. Installation
	3.1. QEMU-Puppy
	3.2. QEMU Accelerator Module (KQEMU)

	4. Booting
	4.1. QEMU-Puppy on Metal (QPM)
	4.2. QEMU-Puppy on Linux (QPL)
	4.3. QEMU-Puppy on Windows (QPW)

	5. Configuration
	5.1. Keyboard
	5.2. Video
	5.3. Network
	a) DHCP
	b) Hosts File

	5.4. Clean Configuration

	6. Tips & Tricks
	6.1. File Transfer
	a) FTP
	b) TAR + NC
	c) QPL
	d) QPW

	6.2. Resizing pup_save.3fs
	a) Linux and Cygwin
	b) Windows

	6.3. Installing other Software
	a) Ruby
	b) Vim
	c) HTMLDOC

	6.4. Cloning

	7. DotPups
	8. Internals
	8.1. Patches of Puppy Linux
	8.2. AllInOneQEMU
	8.3. puppy.exe

	9. License
	10. Known Issues
	Notes

