
Distributing Ruby Applications - Theory and Practice of Building, Packing and Distributing Ruby Applications

Table of Contents
Distributing Ruby Applications..1

Theory and Practice of Building, Packing and Distributing Ruby Applications........................1

1. Introduction..2

2. Create the Application...4

3. Pack the Application (the RBA)...5

4. Distribute the Application (the Executable)..6

5. Summary...7

6. Tutorials..8

7. Future..9
7.1. One Step...9
7.2. Enriching the RBA...9

Distributing Ruby Applications - Theory and Practice of Building, Packing and Distributing Ruby Applicationsi

Distributing Ruby Applications

Theory and Practice of Building, Packing and
Distributing Ruby Applications

Fri May 25 15:05:33 UTC 2007
Erik Veenstra <erikveen@dds.nl>

Distributing Ruby Applications - Theory and Practice of Building, Packing and Distributing Ruby Applications1

mailto:erikveen@dds.nl

1. Introduction
This is how I build, pack and distribute my Ruby applications. Theory and practice. The ultimate goal
is to be able to distribute just one executable (Linux, Darwin or Windows) which contains both the
application and the Ruby interpreter.

The three main steps are:

Create the application in a directory (and its subdirectories).1.
Convert this directory into an RBA (Ruby Archive) with Tar2RubyScript.2.
Convert this RBA into an executable with RubyScript2Exe.3.

I can distribute this executable to my customers as a standalone application. They don't need Ruby.

Customers don't need Ruby.

They don't need Ruby, because it's embedded in the executable, along with the application files and
libraries and gems. Everything they need to run the application. To run the application. Not to install
the application. This document describes a way to create an application.exe. Not a
setup.exe or an install.exe.

(That's a lot of exe-s, but it works on Linux and Darwin, too.)

Distributing Ruby Applications - Theory and Practice of Building, Packing and Distributing Ruby Applications2

1. Introduction

Distributing Ruby Applications - Theory and Practice of Building, Packing and Distributing Ruby Applications3

2. Create the Application
An application is more than just a program or script. It consists of libraries, documentation, help files,
configuration files, images, license, readme, and so on. Because a hard disk isn't one big directory, we
traditionally group files in directories. When installing an application on a hard disk, we can do this
grouping in two ways:

Put all files of one type in one directory. All binaries in one place, all help files in another.
That means that an application is scattered all over the place. That's the way it's done on
Linux and most versions if Unix.

•

Put all files that are part of one application in its own directory tree. Binaries, help files,
configuration files, everything in one place. This time, if you want to search the help files for
a term, you have to find those help files in the first place. In the Windows world, this is the
preferred way of installing applications.

•

Without a good, uniform bookkeeping of your files ("Which files belong to which application?"), it's
virtually impossible to uninstall or update an application. The one-app-one-dir approach gives us the
housekeeping for free. Because Ruby has no uniform way of packing and distributing applications,
putting all files of one application in its own directory tree seems like a safe bet.

User data has to be separated from the applications, under all circumstances. You don't want your data
to be scattered all over the place!

Besides this one-app-one-dir approach, there's also the one-app-one-file approach. Like a ZIP-file or
TAR-ball, but executable. It looks like an ideal way of keeping related files together. I'll return to this
topic later on, because it turns out to be not only a theory: it has already been implemented. Anyway,
you still need to build your application in one directory tree.

A couple of things you have to take care of when creating the application:

The entry point of the application is init.rb . I'll explain this in "Pack the Application (the
RBA)".

•

Use only directories and files. No links, no permissions, no owners, no groups. All this is for
being platform-independent as much as possible.

•

Don't rely on shared libraries which are not part of the Ruby environment. Unless you are
absolutely sure your customer has installed these libraries. For example: the Ruby bindings
for TK are considered to be part of your Ruby environment, TK itself isn't. For that reason, I
like RubyWebDialogs (pure Ruby!) and WxRuby (native widgets).

•

Distributing Ruby Applications - Theory and Practice of Building, Packing and Distributing Ruby Applications4

http://wxruby.rubyforge.org/wiki/wiki.pl

3. Pack the Application (the RBA)
The next step is packing it all into one file, which we can mail, or ship, or publish on the 'Net, or
distribute to all the workstations. Traditionally, we put them in a ZIP-file or a TAR-ball, which has to
be extracted manually by the customer. Not all customers know or want to know how to do that. They
only want to run the application. The goal of most software companies is to reach as much people as
possible: "More people" means "more money". So they make software for stupid customers and get
rich. (It worked for Microsoft...) And open source developers want to make more people happy. To
achieve this, we've created installers, e.g. NSIS.

I want to go back one step and ask this question: Do we really need to install an application before we
can use it? We can rewrite this question: Why do we install an application, anyway? Mostly, because
we have to recreate the environment in which the application has to live. We shouldn't bother our
customer with recreating this environment. He just wants to double click on an icon. That's what he
understands: "To start an application, you have to double click on the icon." If we manage to get our
software down to this level, we can reach even more people. More people being happy, more money.

JAR's (Java Archives) are a common way in the Java universe to package applications, or libraries, or
applets. It's one file, you can launch it by double clicking, it's sealed, it's simple. It's good. Can we do
this with Ruby? Yes, we can. Do we have to change the runtime environment? No, we don't. But Java
knows how to handle JAR's and Ruby doesn't know how to handle RBA's (Ruby Archives): We need
extra tools! No we don't. And yes, it already exists. It's called Tar2RubyScript.

Tar2RubyScript transforms a directory tree, containing your application, into one single Ruby script,
called the RBA (Ruby Archive), along with some code to handle this archive and start the application.
This RBA can be distributed to our friends. When they've installed Ruby, they just double click, and
your application is up and running! See the examples section of RubyWebDialogs for some demos.

To create the RBA:

$ ruby tar2rubyscript.rb application /

The result, application.rb, is the application and can run like any script:

$ ruby application .rb

Tar2RubyScript knows how to handle the embedded archive and is able to extract it to a temporary
directory. After that, it simply loads init.rb, if present, in the newly created directory. This
init.rb is our entry point.

Distributing Ruby Applications - Theory and Practice of Building, Packing and Distributing Ruby Applications5

4. Distribute the Application (the Executable)
Until now, we assumed that our customer has installed Ruby. Even worse: we assumed that he has
installed the same libraries as we have. And the same gems. And that he has the same versions, or at
least compatible versions. Well, that's a lot of assumptions. Unwelcome assumptions. It would be nice
if we could assume that the customers hasn't installed Ruby at all. That's where RubyScript2Exe
comes in.

RubyScript2Exe transforms the RBA (well, any Ruby script...) into a standalone Windows, Linux or
Darwin executable. You can look at it as a "compiler". Not in the sense of a source-code-to-byte-code
compiler, but as a "collector", for it collects all necessary files to run the application on an other
machine: the RBA, the Ruby interpreter and the Ruby runtime library (stripped down for this
application). Anyway, the result is the same: a standalone executable (application.exe). And
that's what we want!

To create the executable:

$ ruby rubyscript2exe.rb application .rb

You can copy the result (application.exe on Windows, application_linux on Linux and
application_darwin on Darwin) to another machine and run the application! Even on a
machine without Ruby.

To list the contents of the executable and the contents of the RBA:

$./ application _linux --eee-list
$./ application _linux --tar2rubyscript-list

On Windows, it's:

c:\home\erik> application .exe --eee-list
c:\home\erik> application .exe --tar2rubyscript-list

Distributing Ruby Applications - Theory and Practice of Building, Packing and Distributing Ruby Applications6

5. Summary
To create the RBA and the executable:

$ ruby tar2rubyscript.rb application /
$ ruby rubyscript2exe.rb application .rb

To list the contents of the executable and the contents of the RBA:

$./ application _linux --eee-list
$./ application _linux --tar2rubyscript-list

Have a look at the sites of Tar2RubyScript and RubyScript2Exe for the usage and other detailed
information of both products.

Distributing Ruby Applications - Theory and Practice of Building, Packing and Distributing Ruby Applications7

6. Tutorials
For now, I'm working on only one tutorial: Distributing Rails Applications.

Distributing Ruby Applications - Theory and Practice of Building, Packing and Distributing Ruby Applications8

7. Future
These sections are just theories. They are not not (yet) (fully) implemented and probably never will
be. If you're satisfied with the previous sections and the executable, you can stop reading...

7.1. One Step

I'm contemplating the combination Tar2RubyScript and RubyScript2Exe in just one step:

$ ruby rubyscript2exe.rb application /

RubyScript2Exe already knows how to embed files and directories. Starting ruby init.rb in the
given directory can't be too difficult...

7.2. Enriching the RBA

We've created an RBA and an executable. The RBA contains the application and the executable
contains the RBA and everything else to run the application.

There's something wrong with this picture. We can't ship the RBA instead of the executable, unless
our customer has installed the same libraries and gems as we have. At least the ones required or
loaded by our application. And it would be nice if the versions were the same as well. Can't we just
ship our libraries and gems along with our application to avoid these dependencies? Can't we just
copy the necessary files from sitelibdir and gemdir into the RBA?

Yes we can, if Tar2RubyScript is able to detect and embed all necessary sitelibdir-files and
rubygem-files (and their dll's and so's, determined recursively) and if RubyScript2Exe is able to
detect and embed all necessary files except the sitelibdir-files and rubygem-files. Combining
these features results in an enriched RBA and the same executable. The RBA can run on a plain Ruby
installation and the executable can run on any machine (with the corresponding OS).

In an ideal world, this RBA contains just Ruby files and no so-files, so the application is platform
agnostic, like Ruby itself. For example, the examples of RubyWebDialogs are perfectly enriched
RBA's.

At the time of writing, Tar2RubyScript and RubyScript2Exe are not able to do this optimization.

The following two images show the differences.

Distributing Ruby Applications - Theory and Practice of Building, Packing and Distributing Ruby Applications9

7. Future

Distributing Ruby Applications - Theory and Practice of Building, Packing and Distributing Ruby Applications10

aior all allinone allinoneruby applications archive bin browser code codesnippet codesnippets compile compiler computer
computerlanguage dialog dialogs distribute distributing distributingrubyapplications distribution eee eee-file eeefile erik erikveen

erikveenstra exe executable exerb file graphical graphicaluserinterface gui gz html http httpserver iloveruby interface jar jit just justintime
lang language one pack package packaging packing packingrubyapplications programming programminglanguage rar rb rb2bin rb2exe rba
rbarchive rbtobin rbtoexe rbw ruby ruby2bin ruby2exe rubyapplications rubyarchive rubycompiler rubyscript rubyscript2 rubyscript2exe

rubyscripts rubyscripttoexe rubytobin rubytoexe rubyweb rubywebdialog rubywebdialogs script scripts server snippet snippets t2rb t2rs tar
tar2rb tar2rbscript tar2rs tar2rscript time ui user userinterface veenstra web webbrowser webdialog webdialogs window windowinbrowser

windows wrap wrapper wxruby zip

7. Future

Distributing Ruby Applications - Theory and Practice of Building, Packing and Distributing Ruby Applications11

	Table of Contents
	Distributing Ruby Applications
	Theory and Practice of Building, Packing and Distributing Ruby Applications

	1. Introduction
	2. Create the Application
	3. Pack the Application (the RBA)
	4. Distribute the Application (the Executable)
	5. Summary
	6. Tutorials
	7. Future
	7.1. One Step
	7.2. Enriching the RBA

